
Using Pandoc Lua scripts with LaTex

J. Madgwick

02/07/2021

Contents
Introduction 1

Installing dependencies . 2
Assumptions . 2

How does Pandoc work? 2

Step 1: Customizing the default conversion settings 3
XeLaTex specific features . 4

Step 2: Manipulating the output using Lua scripting 4

Step 3: Putting it together (a use case) 5
Give code blocks line wrapping, change TOC spacing, add symbol font 5
Convert level 1 header into a title page, adjust level of other headers 6
Wrap HTML ‘div’ with LaTex ‘tcolorbox’ . 6

Conclusion 7

Introduction
Pandoc is a popular utility for converting markup file formats and can also power publishing
workflows. It has been around for quite some time and it’s capabilities now extend far beyond
approximate document format conversion1.

This article will explain how Pandoc can be used to convert some documents while altering
the structure and formatting at the same time. LaTex is then used to create polished PDF
documents without any additional manual editing of LaTex markup.

1Though that’s exactly how this page was written. I used LibreOffice to write the article, converted the ODT
to markdown, added the code snippets and then converted that into HTML which is inserted into a template
page using PHP.

1

https://en.wikipedia.org/wiki/Pandoc

Installing dependencies
Pandoc needs to be installed2 and XeTex is also required3. Most of the LaTex covered is not
specific to XeTex and will work fine with pdftex (also installed with XeTex).

Assumptions
Throughout we’ll be assuming that the source document is markdown (.md). Depending on
the input document format, certain Pandoc features are not available. For example, the way
of passing in LaTex commands described later doesn’t work when using ODT documents as
a source4.

Some knowledge of LaTex and to an extent Pandoc would be useful. This useful article
introduced me to Pandoc.

How does Pandoc work?
In order to use Pandoc to it’s full potential we need to learn how it works and how we can get
involved in that process.

Pandoc essentially reads the input file and parses it, extracting elements it wants (head-
ings, text) and ignoring what it doesn’t (certain styling information, format specific metadata).
These elements are then stored in the Pandoc native format. This is an intermediary format
used only inside Pandoc. An example follows:

[Header 1 ("i-am-a-level-1-header",[],[]) [Str "I",Space,Str
"am",Space,Str "a",Space,Str "level",Space,Str "1",Space,Str
"header"]

↪
↪
,Header 2 ("im-a-level-2-header",[],[]) [Str "I\8217m",Space,Str

"a",Space,Str "level",Space,Str "2",Space,Str "header"]↪
,Para [Str "This",Space,Str "is",Space,Str "a",Space,Str

"sentence.",Space,Str "Here\8217s",Space,Str "some",Space,Code
("",[],[]) "inline code",Str ".",Space,Str "This",Space,Str
"could",Space,Str "be",Space,Str "a",Space,Str "paragraph."]]

↪
↪
↪

Conversion to the output format is done by taking a template for that format and adding in the
information stored in the native format. Depending on the targetted output format, a template
can be optional. E.g. for HTML the default approach is to create just text and markup without
the headers required for a stand-alone page.

For PDF output, the Pandoc native representation is first converted to LaTex with a default
template. This Tex is then converted to PDF with pdftex (the default) or other engines (Xe-
LaTex).

2Version 2.14.0.3 was the latest at the time of writing, although everything here should also works with earlier
versions. To install on a Debian like system, run sudo apt install pandoc

3XeTex is a modern LaTex typesetting engine. It can use normal system fonts which allow for much better
handling of non Latin characters or symbols. To install on a Debian like system, run sudo apt install
texlive-xetex

4This is because the ‘raw_attribute’ Pandoc functionality is not enabled for ODT documents, more informa-
tion here: https://groups.google.com/g/pandoc-discuss/c/ffSJBNFX8q4 .

2

https://opensource.com/article/18/9/intro-pandoc
https://opensource.com/article/18/9/intro-pandoc
https://pandoc.org/MANUAL.html#templates
https://groups.google.com/g/pandoc-discuss/c/ffSJBNFX8q4

Step 1: Customizing the default conversion settings
When converting to PDF from any format5 the results will use the default LaTex style for
‘article’ and a paper size of US Letter. To customize this a YAML metadata file can be in-
cluded6 (when converting from markdown, this can instead be included in the source file). A
file doesn’t need to be used for simple options - they can be passed on the command line
(using -M KEY [=VAL]). Although not documented officially, passing multiple values to the
same key does not appear to work on the command line, the rest of this article assumes a
metadata file is used.

A lot of customization can be done using just the variables Pandoc makes available7.

title: Example Title
author: Example Author
classoption:
- oneside
- a4paper
geometry:
- lmargin=20mm
- rmargin=20mm
- tmargin=20mm
- bmargin=25mm
fontsize: 12pt

The above YAML specifies the document title and author (in the document itself and in the
metadata8) plus LaTex specific options for the document class to use A4 single sided, mar-
gins for the page (via the geometry package which is used by default) and the default font
size.

Under the covers all of these options set LaTex headers in the template. This can be seen
by changing the output format to ‘tex’ and using the stand-alone option (e.g. pandoc ex-
ample.md -s -o out.tex) and looking at the resulting Tex file.

As above, Pandoc includes the most common LaTex header configuration options as vari-
ables. For setting other options and using/configuring other packages the header-includes
option can be used to place LaTex commands directly into the header9:

title: Example with header-includes
header-includes:
- |
```{=latex}
\usepackage{tocloft,tcolorbox}

5E.g pandoc example.md -o out.pdf. Output format is autodetected when specifying output filename. For
some format (native) and for using non standard extensions, -t can be used - e.g. pandoc example.md -t
pdf out.pdf.old

6Using the --metadata-file FILENAME option: https://pandoc.org/MANUAL.html#option--metadata-file
7Some are output format specific. All are documented here: https://pandoc.org/MANUAL.html#variables
8Metadata only versions of these variables are also available. These are suffixed with -meta, e.g. title-meta.
9The Pandoc manual warns that commands need to be placed in a markdown code block to prevent them

being interpreted as markdown. In practice I’ve usually got away without needing to do this, presumably be-
cause of the behaviour/implementation of markdown parsing. Commands can also be included from a separate
file which doesn’t have this problem: https://pandoc.org/MANUAL.html#option–include-in-header. Using a sep-
arate file also works with formats like ODF.

3

https://pandoc.org/MANUAL.html#extension-yaml_metadata_block
https://pandoc.org/MANUAL.html#option--standalone
https://pandoc.org/MANUAL.html#option--metadata-file
https://pandoc.org/MANUAL.html#variables
https://pandoc.org/MANUAL.html#option--include-in-header


\setlength{\cftsubsecnumwidth}{2.8em}
\setlength{\cftsubsubsecnumwidth}{3.6em}
```

XeLaTex specific features
When XeLaTex10 is used (by specifying the --pdf-engine=xelatex option) system fonts
can be used and not just Tex fonts. This allows for easy use of characters which aren’t
compatible with [T1]{fontenc}, such as Unicode symbols, it also makes mixing charac-
ters from different scripts straightforward. This example uses the system Sans font for text
instead of the default LaTex font:

title: Example with XeLaTex fonts and new font
mainfont: Liberation Sans
monofont: Liberation Mono

Step 2: Manipulating the output using Lua scripting
Pandoc has a very useful feature where it can be given a Lua script which can be used to
change the document content (in Pandoc native format) after it has been read but before it
is written to the output format. Pandoc describes these scripts as ‘filters’.

There are many potential uses for this, some are given as examples in the Pandoc manual.
The Lua script uses a Pandoc library to manipulate the document content. The Pandoc
executable contains a built in Lua interpreter for this purpose, so there is no need to have
Lua installed on your system.

The various types of content (e.g. headers, paragraphs) in the source document are stored
as Pandoc ‘elements’. Elements are stored based on a nested hierarchy, where the docu-
ment itself is an array of headers, paragraphs, etc and paragraphs are arrays of strings11.
These elements can be accessed and changed by using one or more ‘filter functions’. Filter
functions target element types12. These functions are defined in the script and called (in a
specific order) by Pandoc when the filter script is executed. The functions are called on each
element matching of that type.

Pandoc filters are very powerful and could even be used to create a document from scratch
without any input at all; e.g. by fetching content from the web from within the script. It’s not
practical to go into more detail here, the Pandoc Lua filters manual is the ultimate reference.

Below is an example of a filter function which runs on all ‘Header’ elements and reduces the
header level by one. A level 2 header in the input document would be written as a level 1
header in the output. This is a trivial example but it does demonstrate how easy to read these
functions can be.

10These options also seem to be compatible with LuaLaTex, but I’ve not tried it.
11Interestingly spaces are not considered as parts of strings but as separate elements. This canmake reading

text in the native representation difficult.
12Note that elements can be more than one type. This can be imagined as inheritance. A filter for Block

elements will apply to paragraphs as well as headers and tables. See https://pandoc.org/lua-filters.html#lua-
type-reference

4

https://pandoc.org/lua-filters.html#examples
https://pandoc.org/lua-filters.html#execution-order
https://pandoc.org/lua-filters.html#execution-order
https://pandoc.org/lua-filters.html#introduction
https://pandoc.org/lua-filters.html#lua-type-reference
https://pandoc.org/lua-filters.html#lua-type-reference

function Header(elem)
elem.level = elem.level - 1
return elem

end

Step 3: Putting it together (a use case)
The metadata file and Lua script filter are very useful when working with a source document
which has sub optimal formatting which cannot be changed because that formatting is re-
quired for another reason.

Recently I made some improvements to a script for converting theOpenIndianadocumentation
(which is written in MkDocs style markdown) into PDF format. At first it seemed the resulting
PDFs wouldn’t be perfect as this would require making changes to the markdown source.
But making these changes would break the documentation website as MkDocs uses
markdown differently to how Pandoc uses it. However, by pulling in some extra LaTex
packages and writing some Lua filter functions, it was possible to create a well formatted
PDF with a similar style.

The rest of this article gives some examples of how extra LaTex packages/configuration and
Lua filter functions are used for the OpenIndiana docs PDF conversion.

Give code blocks line wrapping, change TOC spacing, add symbol font
header-includes:
- \usepackage{fvextra,tocloft,tcolorbox}
- \DefineVerbatimEnviron-

ment{Highlighting}{Verbatim}{breaklines,breakanywhere,commandchars=\\\{\}}↪
- \DefineVerbatimEnviron-

ment{verbatim}{Verbatim}{breaklines,breakanywhere}↪
- \newfontfamily\symbolfont[]{Noto Sans Symbols2}
- \setlength{\cftsubsecnumwidth}{2.8em}
- \setlength{\cftsubsubsecnumwidth}{3.6em}

This adds some extra configuration (in the metadata file/header) which brings in additional
LaTex packages. The ‘fvextra’ package adds a more feature rich verbatim environment, this
is then configured to replace the default environments (‘Highlighting’ is a Pandoc specific
environment) with ones which have a line breaking/wrapping capability – by default long
lines overflow the page.

The ‘newfontfamily’ command is specific to XeLaTex and is used to create a font family for a
specific font. In this case ‘Noto Sans Symbols2’ is used because it’s one of only a few fonts
to support certain Unicode characters (as used in a later section below).

The ‘tocloft’ package allows for additional customization of the table of contents. In this
case the default spacing wasn’t enough for some of the section numbers and they were
overlapping with the section name text. The ‘tcolorbox’ package is covered in a later section
below.

5

https://github.com/OpenIndiana/oi-docs/commit/2d4e46b19dfdc401b92cecff5f63e066ece4e122
https://docs.openindiana.org/
https://docs.openindiana.org/

Convert level 1 header into a title page, adjust level of other headers
function Header(elem)
if (elem.level == 1) then
documentTitle = pandoc.utils.stringify(elem.content)
table.insert(elem.content,1,pandoc.RawInline('latex',

'\\title{'))↪
table.insert(elem.content,pandoc.RawInline('latex',

'}\\maketitle\\tableofcontents\\newpage'))↪
return pandoc.Plain(elem.content)

else
elem.level = elem.level - 1
return elem

end
end
function Meta(m)
m['title-meta'] = documentTitle
return m

end

This Lua snippet defines a filter function (which will be run on all header elements) which
checks if a header is level 1, if it is it stores it’s contents as a regular string and replaces
the header (but not the text content) with LaTex for creating a title page13. The string is then
used to set the title-meta meta value. For PDFs this becomes the ‘Title’ metadata field
in the PDF file. If the header isn’t 1, then the level is reduced by one, as seen the the simple
example earlier.

Wrap HTML ‘div’ with LaTex ‘tcolorbox’
In MkDocs markdown the HTML ‘div’ block is used to create information boxes to highlight
specific content. These are always preceded by an ‘i’ tag which MkDocs uses to insert a
symbol – either an informational or warning symbol. MkDocs styles the ‘div’ with CSS to
appear inside a colored box. An example of the HTML is below.

<i class="fa fa-info-circle fa-lg" aria-hidden="true"></i>
NOTE:↪

<div class="well">
Content to highlight to readers as a note.
</div>

This separation of information is lost during the Pandoc conversion. Pandoc stores the div
and it’s contents as a ‘Div’ element, but in the PDF output there’s nothing to differentiate it
from other text. While the ‘i’ tag is stored by Pandoc, it is lost in the process of converting to
LaTex14.

The Lua below wraps the Div contents with LaTex to create a ‘tcolorbox’ and adds a Unicode
13Note this is perhaps more manual than it needs to be. Setting the ‘title’ meta value causes Pandoc to

automatically add the LaTex for a title page and table of contents can be added with a configuration setting.
However, this method is required if a page break is required afterwards.

14If HTML had been used as the output instead it would be included. Pandoc cannot of course convert plain
HTML markup directly into LaTex markup as the context (stylesheets etc.) is missing.

6

symbol to represent the type of note.

function Pandoc(thedoc)
local blocks = thedoc.blocks
local i = 1
local noteBegin = pandoc.RawBlock('latex',

'\\begin{tcolorbox}{\\symbolfont �} \\textbf{NOTE:}')↪
local cautionBegin = pandoc.RawBlock('latex',

'\\begin{tcolorbox}{\\symbolfont �} \\textbf{CAUTION:}')↪
local noteEnd = pandoc.RawBlock('latex', "\\end{tcolorbox}")
while i <= #blocks do
if (blocks[i].t == "Div" and blocks[i].classes[1] == "well" and

blocks[i-1].t == "Plain" and blocks[i-1].content[1].t ==
"RawInline") then

↪
↪
if (blocks[i-1].content[1].text == "<i class=\"fa

fa-info-circle fa-lg\" aria-hidden=\"true\">" and
blocks[i-1].content[4].content[1].text == "NOTE:") then

↪
↪
table.remove(blocks,i-1)
i = i - 1
table.insert(blocks[i].content,1,noteBegin)
table.insert(blocks[i].content,noteEnd)

elseif (blocks[i-1].content[1].text == "<i class=\"fa
fa-exclamation-triangle fa-lg\" aria-hidden=\"true\">"
and blocks[i-1].content[4].content[1].text == "CAUTION:")
then

↪
↪
↪
table.remove(blocks,i-1)
i = i - 1
table.insert(blocks[i].content,1,cautionBegin)
table.insert(blocks[i].content,noteEnd)

end
end
i = i + 1

end
return thedoc

end

Unlike the other filter functions, this one operates on the whole Pandoc document in one go,
instead of running once for each element of a specified type. This is done because elements
need to be removed based on their index and thus sight of the whole overarching block
element array for the document is required.

Conclusion
This is only a very quick look at some simple things which can be done with Pandoc to
reformat files when converting them. As this article is about Pandoc and mentions PDFs,
it would be a mistake not to also include a Pandoc PDF version which uses some of the
techniques mentioned.

I’ve got some other ideas for Pandoc, if I do write anything else I’ll link it here.

7

	Introduction
	Installing dependencies
	Assumptions

	How does Pandoc work?
	Step 1: Customizing the default conversion settings
	XeLaTex specific features

	Step 2: Manipulating the output using Lua scripting
	Step 3: Putting it together (a use case)
	Give code blocks line wrapping, change TOC spacing, add symbol font
	Convert level 1 header into a title page, adjust level of other headers
	Wrap HTML ‘div’ with LaTex ‘tcolorbox’

	Conclusion

